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ABSTRACT— 

 

The numerical solution of initial value problems (IVPs) is essential in the study of differential equations, with applications across 

engineering, physics, biology, and finance. Among the various numerical methods, the Modified Euler’s method and Taylor’s 

method stand out for their unique approaches and effectiveness. The Modified Euler’s method, a second-order Runge-Kutta 

technique, enhances the basic Euler’s method by incorporating an extra derivative evaluation, striking a balance between 

computational efficiency and accuracy. In contrast, Taylor’s method uses Taylor series expansion for approximation, achieving 

high precision by considering higher-order derivatives. While adding more terms from the Taylor series increases accuracy, it 

also raises computational complexity. Research indicates that the Modified Euler’s method is simpler and less resource-intensive, 

while Taylor’s method excels in accuracy when higher-order derivatives are readily available. Comparative studies reveal that 

both methods have distinct advantages and drawbacks, with the choice often depending on specific problem requirements, 

including desired accuracy and computational resources. Recent developments have also introduced adaptive step size techniques 

and hybrid methods, broadening the applicability of both approaches to a variety of IVPs. 

 

KEY WORDS:— initial value problems; Modified Euler’s method; Runge-Kutta method; Taylor’s method; Legendre Neural 

Network  

 

I. Background: 

State-of-the-art techniques for solving initial value problems (IVPs) are essential in differential equations and have 

broad applications in engineering, physics, biology, and finance. Among the numerous numerical methods available, 

the Modified Euler’s method and Taylor’s method are particularly notable for their unique approaches and 

effectiveness. The Modified Euler’s method, a second-order Runge-Kutta technique, enhances the basic Euler’s method 

by adding an extra derivative evaluation, which improves accuracy while maintaining computational efficiency. In 

contrast, Taylor’s method employs Taylor series expansion for approximation, achieving high precision by 

incorporating higher-order derivatives. While this method's accuracy increases with additional terms from the Taylor 

series, it also introduces greater computational complexity. Recent advancements have seen these methods integrated 

with adaptive step size techniques and hybrid approaches, further expanding their applicability to a broader range of 

IVPs. 

2. Review of Different Methods: 

2.1 Initial Value Problems (IVPs) 

Anitescu et al. [1] proposed a method for solving partial differential equations using artificial neural networks and an adaptive 

collocation strategy. In this procedure, a coarse grid of training points is used at the initial training stages, while more points are 

added at later stages based on the value of the residual at a larger set of evaluation points. This method increases the robustness 

of the neural network approximation and can result in significant computational savings, particularly when the solution is non-

smooth. Numerical results are presented for benchmark problems for scalar-valued PDEs, namely Poisson and Helmholtz  
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equations, as well as for an inverse acoustics problem. 

Abdeljawad et al. [2] proposed fractional operators with nonsingular Mittag-Leffler kernels, a study initiated recently by Atangana 

and Baleanu, from order α ∈ [0, 1] to higher arbitrary order and we formulate their correspondent integral operators. We prove 

existence and uniqueness theorems for the Caputo (ABC) and Riemann (ABR) type initial value problems by using the Banach 

contraction theorem. Then we prove a Lyapunov type inequality for the Riemann type fractional boundary value problems of 

order 2 < α ≤ 3 in the frame of Mittag-Leffler kernels. Illustrative examples are analyzed and an application as regards the Sturm-

Liouville eigenvalue problem in the sense of this fractional calculus is given as well. 

Cano et al. [3]  proposed Lawson methods suffer from a severe order reduction when integrating initial boundary value problems 

where the solutions are not periodic in space or do not satisfy enough conditions of annihilation on the boundary. However, in a 

previous paper, a modification of Lawson quadrature rules has been suggested so that no order reduction turns up when integrating 

linear problems subject to time-dependent boundary conditions. In this paper, we describe and thoroughly analyse a technique to 

avoid also order reduction when integrating nonlinear problems. This is very useful because, given any Runge-Kutta method of 

any classical order, a Lawson method can be constructed associated to it for which the order is conserved. 

Chen et al. [4] proposed specifying a discrete sequence of hidden layers, we parameterize the derivative of the hidden state using 

a neural network. The output of the network is computed using a blackbox differential equation solver. These continuous-depth 

models have constant memory cost, adapt their evaluation strategy to each input, and can explicitly trade numerical precision for 

speed. We demonstrate these properties in continuous-depth residual networks and continuous-time latent variable models. We 

also construct continuous normalizing flows, a generative model that can train by maximum likelihood, without partitioning or 

ordering the data dimensions. For training, we show how to scalably backpropagate through any ODE solver, without access to 

its internal operations. This allows end-to-end training of ODEs within larger models. 

Gu et al. [5] proposed to utilize the radial basis function (RBF) interpolation to modify several finite difference methods and thus 

enhance the performance in terms of local convergence. In this work, we choose multiquadric RBFs as the interpolation basis and 

find the conditions of the shape parameter that could enhance accuracy. The rate of convergence of each modified method is at 

least the same as the original one and can be further improved by making the local truncation error vanish. In that sense, the 

proposed adaptive method is optimal. Compared to the linear multistep methods, the proposed adaptive RBF multistep methods 

exhibit higher order convergence. We provide the analysis of consistency and stability with numerical results that support our 

claims. 

Prakash et al. [6] proposed how we can extend the invariant subspace method to two-dimensional time-fractional non-linear PDEs. 

More precisely, the systematic study has been provided for constructing the various dimensions of the invariant subspaces for the 

two-dimensional time-fractional generalized convection-reaction diffusion-wave equation along with the initial conditions for the 

first time. Additionally, the special types of the above-mentioned equation are discussed through this method separately such as 

reaction-diffusion-wave equation, convection-diffusion wave equation and diffusion-wave equation. Moreover, we explain how 

to derive variety of exact solutions for the underlying equation along with initial conditions using the obtained invariant subspaces. 

Finally, we extend this method to two dimensional time-fractional non-linear PDEs with time delay. Also, the effectiveness and 

applicability of the method have been illustrated through the two-dimensional time-fractional cubic non-linear convection-

reaction-diffusion-wave equation with time delay. In addition, we observe that the obtained exact solutions can be viewed as the 

combinations of Mittag-Leffler function and polynomial, exponential and trigonometric type functions. 

Mall et al. [7] proposed a new method based on single layer Legendre Neural Network (LeNN) model has been developed to 

solve initial and boundary value problems. In the proposed approach a Legendre polynomial based Functional Link Artificial 

Neural Network (FLANN) is developed. Nonlinear singular initial value problem (IVP), boundary value problem (BVP) and 

system of coupled ordinary differential equations are solved by the proposed approach to show the reliability of the method. The  
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hidden layer is eliminated by expanding the input pattern using Legendre polynomials. Error back propagation algorithm is used 

for updating the network parameters (weights). Results obtained are compared with the existing methods and are found to be in 

good agreement. Below Table 1.1 shows initial value problems analysis. 

Table 2.1: Initial Value Problems Analysis 

Author name and 

Reference 
Techniques used Merits Demerits 

Anitescu et al. [1] 
Artificial Neural Networks 

(ANNs) 

Enhances robustness, reduces 

computational costs, handles 

non-smooth solutions 

effectively, and adapts 

flexibly to various PDE 

problems. 

Adds complexity in 

implementation, potential 

increased overhead, 

computationally intensive residual 

calculations, and possible training 

instability. 

Abdeljawad et al. [2] 

fractional operators with 

nonsingular Mittag-Leffler 

kernels, formulated integral 

operators 

Extends fractional calculus to 

higher orders, provides 

theoretical results for initial 

and boundary value problems, 

and includes applications to 

Sturm-Liouville eigenvalue 

problems. 

Complex theoretical framework, 

potentially challenging 

implementation, and higher-order 

fractional operators may 

complicate the analysis and 

computation. 

Cano et al. [3] 

Modified Lawson 

quadrature rules to avoid 

order reduction in 

nonlinear problems 

Prevents order reduction in 

nonlinear problem integration, 

and allows for order 

preservation with any 

classical Runge-Kutta 

method. 

Potentially complex 

implementation, and effectiveness 

depends on the specific 

modification and problem 

characteristics. 

Chen et al. [4] 

Parameterized hidden state 

derivatives with a neural 

network 

Constant memory cost, 

adaptable evaluation strategy, 

trade-off between precision 

and speed, and end-to-end 

training of ODEs within 

larger models. 

Complexity in implementation 

and training, potential challenges 

with scalability and numerical 

stability, and reliance on effective 

backpropagation through ODE 

solvers. 
 

Gu et al. [5] 

Utilized radial basis 

function (RBF) 

interpolation with 

multiquadric RBFs to 

modify finite difference 

methods 

Enhances local convergence, 

maintains or improves 

convergence rate compared to 

original methods, and exhibits 

higher order convergence than 

linear multistep methods. 

Complexity in choosing optimal 

shape parameters, potential 

computational overhead with RBF 

interpolation, and dependency on 

accurate numerical analysis for 

consistency and stability. 

Prakash et al. [6] 

derived exact solutions, and 

extended to nonlinear 

PDEs with time delay 

Provides systematic study and 

exact solutions for complex 

fractional PDEs, extends to 

nonlinear cases, and combines 

Mittag-Leffler functions with 

polynomial, exponential, and 

trigonometric functions. 

Complexity in constructing 

invariant subspaces, potential 

challenges in handling nonlinear 

terms with time delay, and 

dependence on intricate analysis 

for exact solution derivation. 

Mall et al. [7] 

Legendre polynomial-

based Functional Link 

Artificial Neural Network 

(FLANN) 

Simplifies network 

architecture by eliminating the 

hidden layer, achieves good 

agreement with existing 

methods, and effectively 

solves nonlinear and coupled 

ODE problems. 

Limited to single-layer 

architecture, may face challenges 

in handling very complex problems 

compared to multi-layer networks, 

and effectiveness depends on the 

choice of Legendre polynomials. 
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2.2 Modified Euler’s Method 

Modified Euler’s Method, also known as Heun's method, is a numerical technique used for solving ordinary differential equations 

(ODEs) with improved accuracy compared to the basic Euler’s method. It involves a predictor-corrector approach where an initial 

estimate of the solution is refined using an average of the slope at the beginning and end of the interval. This method offers a 

second-order accuracy, providing a balance between computational efficiency and precision, making it suitable for various 

engineering and scientific problems. 

Mao et al. [8] proposed several numerical methods have been developed to study the strong convergence of the numerical solutions 

to stochastic differential equations (SDEs) under the local Lipschitz condition. These numerical methods include the tamed Euler–

Maruyama (EM) method, the tamed Milstein method, the stopped EM, the backward EM, the backward forward EM, etc. In this 

paper we will develop a new explicit method, called the truncated EM method, for the nonlinear SDE dx(t) = f(x(t))dt + 

g(x(t))dB(t) and establish the strong convergence theory under the local Lipschitz condition plus the Khasminskii-type condition 

x T f(x)+ p−1/ 2 | g(x)| 2 ≤ K(1+ | x | 2 ). The type of convergence specifically addressed in this paper is strong-L q convergence 

for 2 ≤ q < p, and p is a parameter in the Khasminskii-type condition. 

Alobaid et al. [9] proposed an additional particle–grid is applied, in which the physical values of solid phase are computed. To 

investigate the influence of the particle–grid application on the simulation accuracy, the numerical results obtained by Euler– 

Lagrange approach combined with a deterministic collision model (known also as Discrete Element Method (DEM)) are validated 

with measurements obtained from a lab-scale spouted fluidized bed. The results confirm that the particle–grid method allows the 

variation of the fluid grid resolution independent of the particle size and consequently improves the calculation accuracy. In the 

second part of this work, the simulation results obtained from the extended Euler–Lagrange/DEM model are compared with the 

simulation results obtained from the Euler–Lagrange approach combined with a stochastic collision model. Two different 

fluidization mass flow rates are considered to analyse the ability of the used simulation approaches to predict the hydrodynamic 

behaviour of the gas spouted fluidized bed. The results show that both techniques can reproduce the right fluidization regimes 

including the bubble size and the bed expansion. Deviations from the experimental data in the jet zone and during the final stage 

of the bubble formation are, however, observed. The reasons of these discrepancies in predicting the dynamic behaviour of the 

bed, the advantages and limitations of the two approaches are demonstrated. 

Al Rjoub et al. [10] proposed an analytical method is developed to study the dynamic behavior of functionally imperfect Euler-

Bernoulli and Timoshenko graded beams with differing boundary conditions, namely, hinged-hinged, clamped-clamped, 

clamped-hinged, and clamped-free. A transfer matrix method is used to obtain the natural frequency equations. The modified rule 

of mixture is used to describe the material properties of the functionally graded beams having porosities. The porosities are 

assumed to be evenly distributed over the beam cross-section. In this study, the effects of boundary conditions, material volume 

fraction index, slenderness ratio, beam theory, and porosity on natural frequency are determined. 

Yakubov et al. [11] proposed to different approaches of a pressure-velocity coupling method to account for density variations in 

cavitating two-phase flow simulations. Results obtained from two strategies are investigated in detail. A simpler engineering 

approach associated the variations of the local density solely with the changes of the vapor-volume fraction computed by a 

cavitation model and assumes incompressible vapor and water phases. A more elaborate method additionally accounts for the 

compressibility of the two individual fluid phases. Numerical issues of significance for engineering applications are discussed in 

the paper, such as the occurrence of ill-conditioned matrices or cavitation-model dependencies. The single-phase verification and 

validation study refers to prominent aerodynamic benchmarks, i.e. a convergent-divergent nozzle flow and the flow over a bump 

in a channel. Cavitating flow validations are concerned with a stationary flow over a hydrofoil. An unsteady cavitating flow over 

a NACA0015 hydrofoil is computed to demonstrate merits of the implemented compressible fluid method to simulate sheet and 

vapor cavitation including the collapse of a vapor cloud followed by a shock wave formation and propagation. 

Zhang et al. [12] proposed on a modified Euler two-fluid model, simulations of a multiphase rotodynamic pump with two stages 

were carried out with medium combinations of air-water and air-crude. The characteristics of phase interaction and gas holdup 

were analyzed at different inlet gas void fractions (IGVFs), and inlet bubble diameters. The results show that the overall  
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changing trend of interphase forces is the same between the first and second stages at different IGVFs, but the magnitudes of 

interphase forces in the second stage are slightly smaller, especially for the medium combination of air-water. Moreover, the drag 

is more sensitive to the IGVF, while the lift and added mass force are more sensitive to the medium viscosity. As the increase of 

the inlet bubble diameter, the difference of the gas holdup effect in the pump increases gradually at IGVF = 9.0%, and the 

maximum almost occurs in the first stage guide vane (S1). When the bubble diameter increases to 0.7 mm, the degree of gas 

accumulation and gas-liquid velocity difference increase significantly, resulting in a significant increase of the disordered degree 

of lift and added mass force. 

Guermond et al. [13] proposed new second-order method for approximating the compressible Euler equations is introduced. The 

method preserves all the known invariant domains of the Euler system: positivity of the density, positivity of the internal energy 

and the local minimum principle on the specific entropy. The technique combines a first-order, invariant domain preserving, 

Guaranteed Maximum Speed method using a Graph Viscosity (GMS-GV1) with an invariant domain violating, but entropy 

consistent, high-order method. Invariant domain preserving auxiliary states, naturally produced by the GMS-GV1 method, are 

used to define local bounds for the high-order method which is then made invariant domain preserving via a convex limiting 

process. Numerical tests confirm the second-order accuracy of the new GMS-GV2 method in the maximum norm, where 2 stands 

for second-order. The proposed convex limiting is generic and can be applied to other approximation techniques and other 

hyperbolic systems. 

Li et al. [14] proposed high order well-balanced discontinuous Galerkin methods for the Euler equations with gravitation, which 

can preserve the discrete polytropic and isothermal hydrostatic balance states exactly. To achieve the well-balancedness, we 

propose to combine the numerical fluxes based on a generalized hydrostatic reconstruction, with an equilibrium state recovery 

technique and a novel source term approximation. Extensive one- and two-dimensional numerical examples are shown to 

demonstrate the performance of our well-balanced methods, and comparison with non well-balanced results is included to 

illustrate the importance of maintaining the balance between pressure gradient and gravitational force numerically. 

Table 2.2: Numerical Methods for Solving IVPs Analysis 

Author name and 

Reference 
Techniques used Merits Demerits 

Mao et al. [8] Euler–Maruyama (EM) 

Provides strong convergence 

theory for SDEs, specifically 

addresses strong-L^q 

convergence, and improves 

accuracy in numerical 

solutions for nonlinear SDEs 

under specific conditions. 

Complexity in implementing and 

analyzing convergence under 

specific conditions, and the method 

may require careful tuning of 

parameters to ensure optimal 

performance. 

 

Alobaid et al. [9] 

particle–grid method in 

Euler–Lagrange/DEM 

simulations for fluidized 

beds 

Improves calculation accuracy 

by varying fluid grid 

resolution independently of 

particle size, and both 

methods accurately predict 

fluidization regimes, bubble 

size, and bed expansion. 

Discrepancies observed in the jet 

zone and bubble formation stages, 

and challenges in accurately 

predicting dynamic bed behavior 

and resolving discrepancies 

between simulation and 

experimental data. 
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Al Rjoub et al. [10] 
transfer matrix method and 

modified rule of mixture 

 

Provides a comprehensive 

analysis of natural frequency 

considering various factors 

like boundary conditions, 

porosity, and material 

properties, and uses a 

systematic approach for 

functionally graded beams. 

Assumes evenly distributed 

porosity which may not represent 

all real-world scenarios, and 

complexity in handling different 

beam theories and boundary 

conditions could limit practical 

applicability. 

Yakubov et al. [11] 

pressure-velocity coupling 

methods for cavitating two-

phase flow 

Provides detailed analysis and 

validation for both single-

phase and cavitating flows, 

demonstrating effective 

simulation of cavitation 

phenomena and shock wave 

formation using compressible 

fluid methods. 

Potential numerical issues such as 

ill-conditioned matrices and 

cavitation-model dependencies, 

and increased complexity in 

simulations with compressible 

fluid methods. 

Zhang et al. [12] 

Simulated a multiphase 

rotodynamic pump using a 

modified Euler two-fluid 

model to analyze phase 

interactions, gas holdup, 

and the effects of inlet gas 

void fractions and bubble 

diameters. 

Provides detailed insights into 

interphase forces and gas 

holdup effects, with 

observations of how drag, lift, 

and added mass forces vary 

with gas void fractions and 

bubble diameters. 

Sensitivity to varying bubble 

diameters and inlet gas void 

fractions can lead to significant 

complexity in analyzing gas 

accumulation and force behavior, 

with potential for increased 

disordered force effects. 

Guermond et al. [13] 

Introduced a second-order 

method (GMS-GV2) for 

approximating 

compressible Euler 

equations, combining a 

first-order invariant domain 

preserving method with a 

high-order method via 

convex limiting. 

Preserves critical invariant 

domains such as density 

positivity and entropy local 

minimum, achieves second-

order accuracy, and applies 

convex limiting which is 

adaptable to other methods 

and hyperbolic systems. 

Complexity of combining methods 

and applying convex limiting may 

increase implementation difficulty, 

and the method's performance may 

vary with different hyperbolic 

systems and approximation 

techniques. 

Li et al. [14] 

Developed high-order well-

balanced discontinuous 

Galerkin methods for Euler 

equations with gravitation 

Preserves discrete polytropic 

and isothermal hydrostatic 

balance exactly, improves 

numerical stability by 

maintaining balance between 

pressure gradient and 

gravitational force. 

Complexity in implementation and 

potential computational cost of 

maintaining well-balanced states, 

with performance dependent on the 

effectiveness of the source term 

approximation and reconstruction 

techniques. 

2.3 Taylor’s Method 

Taylor's Method is a numerical technique used for solving ordinary differential equations (ODEs) by approximating the 

solution using Taylor series expansions. It involves expanding the solution in terms of its derivatives and truncating the series 

after a specified number of terms to provide an approximation of the solution at each step. This method is highly accurate for 

smooth functions but can become computationally expensive as higher-order derivatives are required for better precision. 

Malhotra  et al. [15] proposed a boundary integral equation solver for computing Taylor relaxed states in non-axisymmetric solid 

and shell-like toroidal geometries. The computation of Taylor states in these geometries is a key element for the calculation of 

stepped pressure stellarator equilibria. The integral representation of the magnetic field in this work is based on the generalized 
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Debye source formulation, and results in a well-conditioned second-kind boundary integral equation. The  

 

integral equation solver is based on a spectral discretization of the geometry and unknowns, and the computation of the associated 

weakly-singular integrals is performed with high-order quadrature based on a partition of unity. The resulting scheme for applying 

the integral operator is then coupled with an iterative solver and suitable preconditioners. Several numerical examples are provided 

to demonstrate the accuracy and efficiency of our method, and a direct comparison with the leading code in the field is reported. 

Montavon  et al. [16] proposed Deep Neural Networks (DNNs) are the gold standard for various challenging machine learning 

problems such as image recognition. Although these methods perform impressively well, they have a significant disadvantage, 

the lack of transparency, limiting the interpretability of the solution and thus the scope of application in practice. Especially DNNs 

act as black boxes due to their multilayer nonlinear structure. In this paper we introduce a novel methodology for interpreting 

generic multilayer neural networks by decomposing the network classification decision into contributions of its input elements. 

Although our focus is on image classification, the method is applicable to a broad set of input data, learning tasks and network 

architectures. Our method called deep Taylor decomposition efficiently utilizes the structure of the network by backpropagating 

the explanations from the output to the input layer. We evaluate the proposed method empirically on the MNIST and ILSVRC 

data sets. 

Table 2.3: Taylor’s Method Analysis 

Author name and 

Reference 
Techniques used Merits Demerits 

Malhotra  et al. [15] 

Taylor relaxed states in 

non-axisymmetric toroidal 

geometries, using spectral 

discretization 

Provides accurate and 

efficient computation of 

Taylor states in complex 

geometries, with a well-

conditioned integral equation 

and effective numerical 

methods for high precision. 

Complexity of implementing 

spectral discretization and high-

order quadrature, potential 

computational expense of iterative 

solvers and preconditioners, and 

dependency on comparison with 

existing leading codes. 

Montavon  et al. [16] 

Deep Taylor 

Decomposition for 

interpreting deep neural 

networks by decomposing 

classification decisions into 

contributions from input 

elements, using 

backpropagation of 

explanations from output to 

input. 

Enhances transparency and 

interpretability of deep neural 

networks, applicable to 

various input data and 

network architectures, and 

evaluated on MNIST and 

ILSVRC datasets for 

empirical validation. 

May add computational 

complexity due to the 

backpropagation of explanations 

and potential challenges in scaling 

to very large networks or complex 

tasks beyond image classification. 

 

2.4 Simultaneous Fractional Differential Equations in IVPs 

 

Simultaneous fractional differential equations (FDEs) in initial value problems (IVPs) represent an advanced and intricate field 

of study within mathematical analysis and applied sciences. These equations extend the classical differential equations by 

incorporating fractional derivatives, which are generalizations of integer-order derivatives. The inclusion of fractional orders 

allows for more accurate modeling of various phenomena, particularly those exhibiting memory and hereditary properties such 

as viscoelastic materials, anomalous diffusion processes, and biological systems. 

In the context of IVPs, simultaneous FDEs involve multiple interdependent fractional differential equations that need to be 

solved concurrently, with specified initial conditions. The solutions to these systems provide valuable insights into the  

 

dynamics of complex systems where traditional integer-order models fall short. Methods for solving these equations range from 
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analytical techniques, such as the Laplace transform and the Mittag-Leffler function, to numerical approaches like the finite 

element method, A domian decomposition method, and wavelet-based techniques. 

 

 

One effective numerical method for solving simultaneous FDEs in IVPs is the Legendre wavelets method, which leverages the 

operational matrix of fractional derivatives to convert the problem into a system of algebraic equations. This transformation 

simplifies the solution process and enables efficient computation. The convergence and error analysis of the method ensure its 

correctness and feasibility, making it a powerful tool for addressing complex fractional systems. The study of simultaneous 

FDEs is essential for advancing our understanding of systems with fractional dynamics. By exploring these equations, 

researchers can develop more accurate models and solutions, thereby enhancing the application of fractional calculus in various 

scientific and engineering disciplines. 

Hedayati et al. [17]  proposed by using some fixed point technique such as Banach contraction principle and fixed point theorem 

of Krasnoselskii, we look into the positive solutions for fractional differential equation cDαu(t) equals to f1(t, u(t), cDβ1u(t), 

Iγ1u(t)) and f2(t, u(t), cDβ
2u(t), Iγ2u(t)) for each t belonging to [0,t0] and [t0, 1], respectively, with simultaneous Dirichlet 

boundary conditions, where cDα and Iα denote the Caputo fractional derivative and Riemann–Liouville fractional integral of 

order α, respectively. Some models are thrown to illustrate our results, too. 

Malik et al. [18] determining a time dependent source term along with diffusion/temperature concentration from a non-local 

over-specified condition for a space-time fractional diffusion equation is considered. The space-time fractional diffusion 

equation involve Caputo fractional derivative in space and Hilfer fractional derivatives in time of different orders between 0 

and 1. Under certain conditions on the given data we proved that the inverse problem is locally well-posed in the sense of 

Hadamard. Our method of proof based on eigenfunction expansion for which the eigenfunctions (which are Mittag-Leffler 

functions) of fractional order spectral problem and its adjoint problem are considered. Several properties of multinomial Mittag-

Leffler functions are proved. 

Tatar et al. [19] proposed the solution for the inverse problem is proved by using quasi-solution method which is based on 

minimizing an error functional between the output data and the additional data. In this context, an input–output mapping is 

defined and continuity of the mapping is established. The uniqueness of the solution for the inverse problem is also proved by 

using eigenfunction expansion of the solution and some basic properties of fractional Laplacian. A numerical method based on 

discretization of the minimization problem, steepest descent method and least squares approach is proposed for the solution of 

the inverse problem. The numerical method determines the exponents of the fractional time and space derivatives 

simultaneously. Numerical examples with noise-free and noisy data illustrate applicability and high accuracy of the proposed 

method. 

Guerngar et al. [20] proposed the solution for the inverse problem is proved using the quasi-solution method which is based on 

minimizing an error functional between the output data and the additional data. In this context, an input-output mapping is 

defined and its continuity is established. The uniqueness of the solution for the inverse problem is proved by means of 

eigenfunction expansion of the solution of the forward problem and some basic properties of fractional Laplacian. A numerical 

method based on discretization of the minimization problem, namely the steepest descent method and a least squares approach, 

is proposed for the solution of the inverse problem. The numerical method determines the fractional exponents simultaneously. 

Finally, numerical examples with noise-free and noisy data illustrate applicability and high accuracy of the proposed method. 

Jing et al. [21] proposed the uniqueness in identifying multiple parameters simultaneously in the one-dimensional time-

fractional diffusion-wave equation of fractional time-derivative order ∈ (0, 2) with the zero Robin boundary condition. Using 

the Laplace transform and a transformation formula, we prove the uniqueness in determining an order of the fractional 

derivative, a spatially varying potential, initial values and Robin coefficients simultaneously by boundary measurement data, 

provided that all the eigenmodes of an initial value do not vanish. Furthermore, for another formulation of inverse problem 

with input source term in place of initial value, by the uniqueness in the case of non-zero initial value and a Duhamel principle, 

we prove the simultaneous uniqueness in determining multiple parameters for a time-fractional diffusion-wave equation. 
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Table 2.4: Simultaneous Fractional Differential Equations 

Author name and 

Reference 
Techniques used Merits Demerits 

Hedayati et al. [58] 

Fixed point techniques, 

including the Banach 

contraction principle and 

Krasnoselskii's fixed 

point theorem, to analyze 

positive solutions for 

fractional differential 

equations with Caputo 

derivatives and 

Riemann–Liouville 

integrals. 

Provides a robust 

framework for establishing 

the existence of solutions 

under Dirichlet boundary 

conditions, applicable to 

various models. 

The reliance on fixed point 

methods may limit the 

applicability to more complex 

or nonlinear scenarios. 

Malik et al. [59] 

Eigenfunction expansion 

using Mittag-Leffler 

functions to analyze a 

space-time fractional 

diffusion equation with 

Caputo and Hilfer 

fractional derivatives, 

proving local well-

posedness. 

Establishes a strong 

foundation for solving 

inverse problems and 

demonstrates the 

applicability of Mittag-

Leffler functions in 

fractional calculus. 

The complexity of the 

eigenfunction approach may 

limit straightforward 

implementation in practical 

scenarios. 

Tatar et al. [60] 

Quasi-solution method to 

minimize error 

functionals, 

eigenfunction expansion 

for uniqueness proof, and 

numerical methods 

involving discretization, 

steepest descent, and 

least squares for solving 

inverse problems. 

Effectively determines 

fractional derivative 

exponents simultaneously 

while ensuring high 

accuracy even with noisy 

data. 

The method may require careful 

tuning of parameters and can be 

sensitive to noise in the data. 

Guerngar et al. [61] 

Quasi-solution method 

for minimizing error 

functionals, 

Achieves simultaneous 

determination of fractional 

exponents with high 

Sensitivity to noise and the need 

for careful parameter tuning 
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eigenfunction expansion 

for uniqueness proof, and 

numerical methods 

including steepest 

descent and least squares 

for solving the inverse 

problem. 

accuracy, demonstrating 

effectiveness with both 

noise-free and noisy data. 

may complicate practical 

applications. 

Jing et al. [62] 

Laplace transform and 

transformation formula 

to establish uniqueness in 

identifying multiple 

parameters for time-

fractional diffusion-wave 

equations under zero 

Robin boundary 

conditions. 

Effectively demonstrates 

simultaneous identification 

of fractional derivative 

orders, potential, initial 

values, and Robin 

coefficients from boundary 

measurements. 

Dependence on non-vanishing 

eigenmodes may limit 

applicability in certain scenarios 

with insufficient boundary data. 

 

 

3. Summary 

 

 This collection focuses on Initial Value Problems (IVPs) and various numerical methods for their solutions, including 

Modified Euler’s Method, Taylor’s Method, and Modified Fractional Methods. It emphasizes the role of Special Functions in 

differential methods, particularly the Mittag-Leffler Function, in addressing IVPs. Additionally, it covers definitions and 

applications of Fractional Calculus in IVPs, exploring both single and simultaneous Fractional Differential Equations to highlight 

their significance in modeling complex dynamic systems. 
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